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                                   Abstract 
 

This paper explores the challenge of estimating infant 

age from facial photographs using deep learning. We 

evaluate three vision architectures: VGG16, a 

convolutional neural network, ViT-B/16, a Vision 

Transformer, and two variants of SimCLR-V2 classifier, 

framing the task as a 3-class classification problem (ages 

1, 2, or 3). To address the scarcity of baby-specific data, we 

construct an expanded dataset by augmenting UTKFace 

with curated web-sourced baby images and label-

preserving transformations. Our models are fine-tuned and 

benchmarked on a held-out test set, with confusion matrices 

used to analyze performance by age class. While VGG16 

excels at identifying younger infants and ViT achieves 

stronger generalization and higher overall accuracy, the 

SimCLR-V2 outperforms both. These findings highlight the 

promise of transfer learning for fine-grained age estimation 

in early childhood.  

1. Introduction 

Estimating the age of individuals from facial images is a 

widely studied problem in computer vision, with 

applications in biometrics, content personalization, and 

healthcare. While some models exist for adult age 

estimation, the task becomes significantly more challenging 

when applied to infants and toddlers. Subtle developmental 

changes, limited facial structure differentiation, and the 

lack of large annotated datasets make baby age estimation 

a largely underexplored domain. 

 

This project focuses on predicting the age category of 

babies from single facial images using deep learning. 

Specifically, we evaluate the effectiveness of three 

powerful model families: convolutional neural networks 

(CNNs), Vision Transformers (ViTs), and two variants of 

SimCLR with a Resnet50 backbone. The CNN, ViT models 

were pretrained on ImageNet, while one variant of our 

model was also pretrained on ImageNet, the other variant 

was trained with self-supervision on UTKFace dataset 

before fine tuning. We aim to determine which model 

generalizes better under real-world conditions and limited 

data by comparing their performance on the same dataset, 

both with and without data augmentation. 

 

Given the scarcity of publicly available, baby-specific face 

datasets, we began with a filtered subset of the UTKFace 

dataset and augmented it by crawling additional images 

from the web. To further increase data diversity and 

quantity, we applied targeted data augmentation techniques 

including rotation, color jitter, and perspective 

transformations. This resulted in a balanced and sufficiently 

large training set, allowing for meaningful evaluation of 

deep learning models. 

 

Our goal is not only to assess model accuracy but also to 

analyze where and why different architectures succeed or 

fail. By reporting validation accuracy, confusion matrices, 

and qualitative trends in predictions, we provide an 

empirical foundation for future work in baby age estimation 

using modern vision architectures. 

2. Related Work 

 

Early methods for age estimation relied on handcrafted 

features and statistical models. Techniques such as Local 

Binary Patterns (LBP) and Scale-Invariant Feature 

Transform (SIFT) were employed to capture facial textures 

and shapes, which were then used in conjunction with 

classifiers like Support Vector Machines (SVMs) for age 

prediction. However, these methods often struggled with 

variations in lighting, pose, and facial expressions, leading 

to limited accuracy, especially in unconstrained 

environments. 

 

Deep Learning has revolutionized age estimation tasks. 

Convolutional Neural Networks (CNNs) have 

demonstrated superior performance by automatically 

learning hierarchical features from data [1,7]. Models like 

VGG-16, ResNet, and Inception have been fine-tuned for 

age estimation tasks, achieving notable accuracy 

improvements. For instance, the Deep EXpectation (DEX) 

model utilized a VGG-16 [1] architecture trained on the 

IMDB-WIKI dataset, achieving impressive results in age 

estimation tasks. 
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Despite these advancements, most deep learning models 

have been trained and evaluated on datasets predominantly 

consisting of adult faces, such as MORPH, FG-NET, and 

IMDB-WIKI [1][3]. This focus limits their applicability to 

infant age estimation, where facial features differ 

significantly. 

 

Estimating the age of infants poses distinct challenges. The 

rapid and subtle changes in facial features during early 

development require models to be sensitive to minute 

differences. The variation in growth and development 

among children of the same age (newborn to three years) 

tends to be greater than the differences seen across different 

ages; these are attributed to factors such as genetic, 

environmental and nutritional differences; furthermore, 

growth is not linear: babies and toddlers experience spurts 

in growth rather than steady increases. [15] 

 

Moreover, the scarcity of large-scale, annotated infant face 

datasets hampers the training of robust deep learning 

models. 

 

To address these challenges, researchers have explored 

various approaches: 
 

• BabyFace Dataset: Dataset comprising over 

15,000 images of infants aged 0 to 24 months. The 

study proposed SSR-Net with an attention 

mechanism, achieving an age estimation error of 

less than two months. [17] 

 

• Gestational Age Estimation: Researchers 

developed a system combining CNNs and Support 

Vector Regression to estimate gestational age 

using images of newborns' faces, feet, and ears, 

achieving an expected error of six days. [18] 

 

• Skull Radiograph Analysis: A study utilized deep 

learning models on skull X-ray images to predict 

the postnatal age of infants under 12 months, 

demonstrating the potential of medical imaging in 

age estimation.[19] 
 

Recently, Transformer architectures have gained attention 

in computer vision tasks. Vision Transformers (ViTs) have 

shown promise in capturing global contextual information, 

which is beneficial for age estimation. While ViTs have 

been primarily applied to adult face datasets, their 

application to infant age estimation remains an emerging 

area of research. [6] 

 

The field of infant age estimation is still developing, with 

challenges stemming from limited datasets and the subtlety 

of facial changes in early development. While traditional 

methods laid the groundwork, deep learning approaches, 

particularly CNNs, have significantly advanced the field. 

The introduction of specialized datasets like BabyFace and 

the exploration of Transformer-based, CNN and contrastive 

learning models offer promising directions for future 

research. 
 

3. Methods 
 

We formulate the task of baby age estimation as a 3-class 

classification problem, where the input is a single RGB 

image of a baby’s face and the output is a discrete age class: 

1 year, 2 years, or 3 years. Let the input image be denoted 

by x ∈ R3x224x224 and the target label by y ∈ {0,1,2}, 

corresponding to the three age categories. Given an image 

x, our model outputs a probability distribution 𝑝̂ = 𝑓θ (x) 

∈ R3 where ∑ 𝑖  𝑝̂i = 1 via a softmax layer. The predicted 

age class is then given by 𝑦̂ = arg maxi 𝑝̂i. 
 

We experiment with four modern deep architectures: 
 

• VGG-16 CNN: A deep convolutional network 

with 13 convolutional layers and 3 fully connected 

layers. We use the ImageNet-pretrained weights 

and finetune only the final classifier layer by 

replacing the 1000-way output with a 3-class 

output head. All convolutional layers are frozen 

during training, and only the classifier is updated. 

 

• ViT-B/16 (Vision Transformer): A transformer-

based architecture that divides an image into 

16×16 patches and processes them as a sequence 

of tokens. We use the ViT_B_16_Weights 

pretrained weights from PyTorch. All transformer 

blocks are frozen, and we finetune only the 

classification head. Both models are trained using 

cross-entropy loss. 
 

• SimCLRv2 r50_1x_sk1: A self-supervised 

learning model designed to leverage large amounts 

of unlabeled data while requiring minimal labeled 

examples for fine-tuning. Built with Resnet50 

with 35 million parameters and pretrained on 

ImageNet.  

 

• SimCLRv2 UTKFace: A new model trained on 

contrastive learning with UTKFace dataset for 270 

epochs, and a classifier added on top. 
 

4. Dataset and Features 
 

Our experiments are based on a combination of the 

UTKFace dataset [11] and a supplementary collection 

of baby images crawled from the Internet. The 
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UTKFace dataset is a large-scale facial dataset labeled 

with age, gender, and ethnicity, from 0 - 116 years old.  

Unfortunately, infant images represent only a small 

fraction (8.5%) of the dataset and are highly 

imbalanced across age labels. Furthermore, this dataset 

also presents significant inconsistencies in images 

between the three age groups: Age 1: 1282, Age 2: 531, 

Age 3: 318, with Age 1 representing 60% of the data. 

To mitigate this limitation, we constructed a curated 

superset and later applied extensive data augmentation 

to artificially expand our training set. 
 

We selected only those images labeled with age 1, 2, 

or 3, based on the filename convention in UTKFace 

(e.g., 1_...jpg indicates ages between 0 - 1), and after 

adding the crawled images, this resulted initially in a 

dataset of: 2,235 images for age 1, 1489 for age 2, and 

1,447 for age 3, for a total of 5,171 original baby face 

images. 

 

 

 
 

Inspecting the dataset with t-SNE analysis we found 

Age 1 (Class 0) to have the most separation from Age 

3 (Class 2) and Age 2 (Class 1) to have the least 

separation from the other two categories. This is not 

surprising since Age 2 is in a developmental stage 

between Age 1 and Age 3:  

 

 
 

 

 

 

 

 

 

We therefore expect our models to have special 

difficulties identifying Age 2 category. 
 

VGG-16 and ViT-B/16 
 

For VGG and ViT models it is essential to have a large 

dataset, to increase the dataset size we applied three 

forms of label-preserving augmentation to every 

image: 

 

• Random Rotation (±15°) — to simulate head pose 

variation 

• Color Jitter (brightness, contrast) — to simulate 

lighting variability 

• Perspective Warp — to simulate slight viewpoint 

shifts 
 

After augmentation, we obtained an expanded dataset 

of: 

• 5,688 images per class  

• Total: 17,064 images 
 

Each image was resized and cropped to a resolution of 

224 × 224 pixels using the MTCNN face detector [8], 
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with a 20% margin added to preserve surrounding 

context (e.g. head and ears) 

We did not extract hand-crafted features like HOG, 

SIFT, or PCA-reduced embeddings. Instead, we relied 

entirely on end-to-end feature learning from raw pixels 

using VGG-16 and ViT. No additional engineered 

features (e.g., landmarks or age-specific ratios) were 

used. The effectiveness of these deep features was 

validated by training only the final classification layer 

on our custom dataset. 
 

5. Baseline Experiments / Results / Discussion 
 

In the initial experiments (baseline), we trained both 

models on a smaller subset of the UTKFace dataset 

(with fewer than 1300 images total). The performance 

was promising but limited by data scarcity, several 

images with inaccurate ages (2 and 3) and class 

imbalance, with VGG-16 and Vit-B/16 resulting in 

validation accuracy of 66.7% and 65.4% respectively. 

Despite decent results, both models exhibited 

overfitting and reduced generalization due to the 

unbalanced nature of the initial data (60% Age 1), and 

thus, we discarded those results.  
 

After an exhaustive search for an adequate dataset, we 

opted for augmenting to expand the dataset to 17,064 

total images (5,688 per class), we retrained both 

models and observed marked improvements. 
 

Final Validation Accuracy (Based on Confusion 

Matrix Evaluation): 
 

Model Correct 

Predictions 

# Val 

Images 

Final 

Accuracy 

VGG-16 1411 2560 55.2% 

ViT-B/16 1467 2560 57.3% 

 

VGG-16 Confusion Matrix 

 

 
 

Strong on Age 1: 79.2% accuracy (676/853) 

Weak on Age 3: only 31.5% accuracy (269/854) 

High Age 3→2 confusion observed 

 

ViT Confusion Matrix 

 

 
 

 

More balanced across all classes 

Notably stronger on Age 3: 56.3% accuracy (481/854) 

Moderate confusion between adjacent ages (1→2, 2→3) 

 

 

Detailed Comparison 

 

Metric VGG-16 ViT 

Total val 

.images 

2560 2560 

Correct 

predictions 

1413 1467 

Val accuracy 55.2% 57.3% 

Age 1 accuracy 79.2% 56.9% 

Age 2 accuracy 54.9% 58.7% 

Age 3 accuracy 31.5% 56.3% 

Bias observed Overconfident 

on Age 1 

Balanced, 

slightly Age 2 

heavy 

Generalization Weaker on Age 

3 

Stronger 

overall 

Confusion 

Trend 

High Age 3 -> 

Age 2 

confusion 

(UTKDataset 

shows this 

issue too) 

Smoother Age 

1→2→3 

transitions 

 

 

Qualitative Error Analysis 
 

Both models struggle most with distinguishing 

between Ages 2 and 3, confirming our prediction from 

t-SNE analysis and the confusion matrix findings, and 

the mislabeled data we identified with the original 

UTKFace Dataset. These qualitative samples highlight 

the visual ambiguity of certain faces and the 
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importance of fine-grained cues for infant age 

estimation. 
 

Overfitting and generalization 
 

VGG16 showed signs of overfitting to younger age 

classes, particularly Age 1, where it achieved high 

accuracy but deteriorated sharply on Age 3. 

 

ViT, while less accurate on Age 1, generalized better 

across the entire age spectrum. This aligns with our 

hypothesis that ViT’s attention mechanism better 

captures fine-grained facial features when given 

sufficient data. 
 

Insights 
 

VGG16 tended to rely on low-level features, leading to 

underperformance on less distinctive faces of older 

babies. 
 

ViT's patch-based encoding led to smoother 

predictions, but still showed mild bias toward Age 2, 

potentially due to data augmentation artifacts or 

inherent ambiguity in that developmental stage. 

 

Data augmentation significantly increased both 

models’ robustness.  
 

SimCLRv2 r50_1x_sk1  
 

Next, we evaluated the dataset using two variations of 

SimCLRv2. The first variation was provided by 

google-research/simclr at github.com. 
 

The model has been pretrained on the ImageNet 

dataset, providing high-quality feature embeddings 

from its backbone. Its layers are frozen, therefore fine-

tuning the backbone layers is not possible, but given 

the limited size of our dataset, fine-tuning would not be 

promising. However, the model’s strong performance 

in Linear Evaluation (74.6%) suggests that adding a 

classifier on top can effectively leverage its pretrained 

features for promising results. 
 

We tried both, expanding our dataset, and using only 

the 5,171 images. We also tried extracting the face 

from each image and omitting extraction from our data 

pipeline. For the final classifier, we tried both a shallow 

classifier and alternatively a deep layer classifier. We 

also added minor image augmentation to the data 

pipelines which improved the speed of each training 

epoch. 

 

 

 

The classifiers were built as follows: 
 

Shallow Classifier:  

 

- Images (224×224×3) undergo random flipping, 

rotation, and zoom to improve generalization. 

- SimCLRv2 feature extractor model to extract the 

feature embeddings (proj_head_input). 

- A 128-unit dense layer refines extracted features. 

- Batch Normalization stabilizes training, while 

Dropout (0.3) prevents overfitting. 

- A Softmax classifier predicts one of three classes 

 

Deep Classifier: 

 

- Input images also undergo random flipping, 

rotation, and zooming to improve generalization. 

- SimCLRv2 feature extractor model to extract the 

feature embeddings (proj_head_input). 

- First dense layer (512-unit, ReLU, dropout) 

refines extracted features. 

- Second dense layer (256-unit, BatchNorm, 

dropout) introduces a skip connection: 

o If feature dimensions match, they are 

added. 

o Otherwise, they are concatenated to 

preserve feature integrity. 

- Third dense layer (128-unit, BatchNorm, dropout) 

refines learned representations. 

- A Softmax classifier predicts one of three classes 

 

The training was performed with 20 epochs, we 

explored learning rates of 0.0005 to .0001, with a 

learning rate drop of 0.75*LR validation loss callback 

with patience = 3. All runs with a batch size of 64.  
 

Table with results of our various approaches:  

 

Classifier Face 

Crop 

Aug / 

exp 

No 

Crop 

Shallow 65.31 64.27 68.6 

Deep  64.45 68.3 70.6 

 

The above results of 68.6 show that despite the 

simplicity of the shallow classifier it performs close to 

the deep classifier, and no additional pre-processing on 

the images is needed. The shallow classifier performs 

better than VGG and ViT on less data.  
 

Below are the results of the SimCLRv2 with Deep 

Classifier: 
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SimCLRv2 UTKFace 
 

Next, we built a SimCLRv2 model from the ground up 

by doing self-supervision training with the UTKFace 

dataset. The main objective was to determine if we 

could surpass the results from r50_1x_sk1 by 

leveraging fine tuning. The UTKFace dataset consist 

of approximately 25,000 images, with age categories 

from 0 to 116, with various data sizes per category. The 

Restnet50 architecture was used as the backbone with 

image size set to 224x224, and normalization 

transformation applied to each image based on the 

calculated mean and standard deviation specific to this 

dataset.  

Approximately 250 epochs were completed in 12 hours 

and achieved an accuracy of ~16%.  
 

 
After extracting the features and analyzing with t-SNE, 

we can see that the categories from 0 – 10 (aqua blue) 

are being separated from the bulk of the data. These 

capture the age categories of interest in this 

investigation. 
 

  
 

After adding the Deep Classifier on top, and unfreezing 

the backbone layers for fine tuning, it achieved a 

validation accuracy of 63.9%. The below results are 

with the original 5K dataset, without any image 

preprocessing: 
 

 
 

We also tried the Shallow Classifier, and other schemes 

to improve the validation accuracy but are here omitted 

for brevity.  

 

SimCLRv2 r50_1x_sk1 Error Analysis 

 

The picture below shows examples of false predictions 

from the SimCLRv2 r50_1x_sk1model for babies of 

Age 1 predicted falsely as Age 2 (first row), and the 

True predictions (second row). When compared, the 

babies who are wrongly categorized appear in general 

older.  
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Furthermore, the picture below shows similar 

examples for false predictions for babies of Age 3 

predicted as Age 2 (first row). In contrast to the 

previous example, these babies appear in general 

younger.  

  

 
 

In both cases, the model is mis-categorizing images 

because it’s picking up based on the fact that in the real 

world, in the span of a year, babies of Age 2 sometimes 

appear similar to Age 1 and sometimes appear similar 

to Age 3. If the model is recognizing facial details, 

higher resolution images in the train data might provide 

the granularity to train the model to recognize more 

subtle details about Age 2 and categorize it 

appropriately. 
 

6. Conclusion / Future Work 
 

Overall results:  

  
Val acc 

(%) 

   

Model Overall  Age 1 Age 2 Age 3 

VGG-16 55.2 79.2 54.9 58.7 

ViT-B/16 57.3 56.9 58.7 56.3 

SimCLRv2 

UTKFace 

63.9 71 49 55 

SimCLRv2  

r50_1x_sk1  

70.63 77 51 70 

 

Above we can see that all models struggle to predict 

the Age 2 category. It is surprising that the homebuilt 

SimCLRv2 model also outperformed VGG and ViT 

(63,9%). Overall r50_1x_sk1 model is the top 

performer according to validation accuracy, although 

the ViT seems to generalize better and provide more 

balance results.  

 

  

In this project, we explored the challenge of estimating 

the relative age of babies from facial photographs using 

deep learning. This task is especially difficult due to 

the subtle visual changes between early childhood 

stages, compounded by a lack of large, annotated 

datasets specific to infant faces. To overcome this, we 

constructed an expanded dataset using UTKFace 

combined with crawled and augmented baby images, 

resulting in over 17,000 labeled samples across three 

target age classes: 1, 2, and 3 years old. 

 

We evaluated three prominent deep learning 

architectures, VGG16, a convolutional neural network, 

ViT-B/16, a Vision Transformer model, and 

SimCLRV2, a contrastive learning self-supervision 

model. Although VGG16 and ViT-B/16 shine really 

well when there are large datasets available, in the real 

world we hardly find those datasets waiting for us. 

Unfortunately, augmenting and expanding artificially 

did not bring about the best results. However, 

SimCLRv2 conveyed to us its power by demonstrating 

its practicality in real world scenarios when freely 

abundant datasets are not available. By transferring 

learning, a powerful classifier can be built with a very 

small amount of data.  

 

Significant challenges had to be overcome to bring this 

paper to fruition. However, by learning the ability to 

scrape images of the internet, and leverage self- 

supervised models and transfer learning, the skills 

acquired have opened the door to a world of unlimited 

data and deep learning.  

 

If more time and compute were available, several 

promising directions could be explored: 

 

• Fine-Grained Age Labels: Instead of discrete class 

labels (1, 2, 3), train on continuous age values with 

more precise annotations to improve granularity 

and evaluate regression-based formulations. The 

Mixup technique could be explored in this 

direction.  
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• Facial Landmark-Aware Models: Introduce 

explicit facial keypoint guidance or hybrid CNN-

graph architectures to capture spatial growth 

patterns in baby faces. 

• Bias and Robustness Analysis: Systematically 

evaluate the models across ethnicity, gender, 

lighting, and pose variations to ensure fair and 

stable performance in real-world deployment. 

• Additional training to SimCLR UTKFace model: 

Explore tweaks to increase the effectiveness and 

efficiency of feature extraction, and increase its 

epochs.  

 

Ultimately, this work represents a foundational step 

toward building AI systems that understand early facial 

development—a complex, underexplored domain with 

significant emotional and technical relevance.  
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