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Abstract

This paper explores the challenge of estimating infant
age from facial photographs using deep learning. We
evaluate three vision architectures: VGGI16, a
convolutional neural network, ViT-B/16, a Vision
Transformer, and two variants of SimCLR-V2 classifier,
framing the task as a 3-class classification problem (ages
1, 2, or 3). To address the scarcity of baby-specific data, we
construct an expanded dataset by augmenting UTKFace
with curated web-sourced baby images and label-
preserving transformations. Our models are fine-tuned and
benchmarked on a held-out test set, with confusion matrices
used to analyze performance by age class. While VGG16
excels at identifying younger infants and ViT achieves
stronger generalization and higher overall accuracy, the
SimCLR-V2 outperforms both. These findings highlight the
promise of transfer learning for fine-grained age estimation
in early childhood.

1. Introduction

Estimating the age of individuals from facial images is a
widely studied problem in computer vision, with
applications in biometrics, content personalization, and
healthcare. While some models exist for adult age
estimation, the task becomes significantly more challenging
when applied to infants and toddlers. Subtle developmental
changes, limited facial structure differentiation, and the
lack of large annotated datasets make baby age estimation
a largely underexplored domain.

This project focuses on predicting the age category of
babies from single facial images using deep learning.
Specifically, we evaluate the effectiveness of three
powerful model families: convolutional neural networks
(CNNs), Vision Transformers (ViTs), and two variants of
SimCLR with a Resnet50 backbone. The CNN, ViT models
were pretrained on ImageNet, while one variant of our
model was also pretrained on ImageNet, the other variant
was trained with self-supervision on UTKFace dataset
before fine tuning. We aim to determine which model
generalizes better under real-world conditions and limited
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data by comparing their performance on the same dataset,
both with and without data augmentation.

Given the scarcity of publicly available, baby-specific face
datasets, we began with a filtered subset of the UTKFace
dataset and augmented it by crawling additional images
from the web. To further increase data diversity and
quantity, we applied targeted data augmentation techniques
including rotation, color jitter, and perspective
transformations. This resulted in a balanced and sufficiently
large training set, allowing for meaningful evaluation of
deep learning models.

Our goal is not only to assess model accuracy but also to
analyze where and why different architectures succeed or
fail. By reporting validation accuracy, confusion matrices,
and qualitative trends in predictions, we provide an
empirical foundation for future work in baby age estimation
using modern vision architectures.

2. Related Work

Early methods for age estimation relied on handcrafted
features and statistical models. Techniques such as Local
Binary Patterns (LBP) and Scale-Invariant Feature
Transform (SIFT) were employed to capture facial textures
and shapes, which were then used in conjunction with
classifiers like Support Vector Machines (SVMs) for age
prediction. However, these methods often struggled with
variations in lighting, pose, and facial expressions, leading
to limited accuracy, especially in unconstrained
environments.

Deep Learning has revolutionized age estimation tasks.
Convolutional ~ Neural = Networks (CNNs) have
demonstrated superior performance by automatically
learning hierarchical features from data [1,7]. Models like
VGG-16, ResNet, and Inception have been fine-tuned for
age estimation tasks, achieving notable accuracy
improvements. For instance, the Deep EXpectation (DEX)
model utilized a VGG-16 [1] architecture trained on the
IMDB-WIKI dataset, achieving impressive results in age
estimation tasks.



Despite these advancements, most deep learning models
have been trained and evaluated on datasets predominantly
consisting of adult faces, such as MORPH, FG-NET, and
IMDB-WIKI [1][3]. This focus limits their applicability to
infant age estimation, where facial features differ
significantly.

Estimating the age of infants poses distinct challenges. The
rapid and subtle changes in facial features during early
development require models to be sensitive to minute
differences. The variation in growth and development
among children of the same age (newborn to three years)
tends to be greater than the differences seen across different
ages; these are attributed to factors such as genetic,
environmental and nutritional differences; furthermore,
growth is not linear: babies and toddlers experience spurts
in growth rather than steady increases. [15]

Moreover, the scarcity of large-scale, annotated infant face
datasets hampers the training of robust deep learning
models.

To address these challenges, researchers have explored
various approaches:

e BabyFace Dataset: Dataset comprising over
15,000 images of infants aged 0 to 24 months. The
study proposed SSR-Net with an attention
mechanism, achieving an age estimation error of
less than two months. [17]

e Gestational Age  Estimation: Researchers
developed a system combining CNNs and Support
Vector Regression to estimate gestational age
using images of newborns' faces, feet, and ears,
achieving an expected error of six days. [18]

e  Skull Radiograph Analysis: A study utilized deep
learning models on skull X-ray images to predict
the postnatal age of infants under 12 months,
demonstrating the potential of medical imaging in
age estimation.[19]

Recently, Transformer architectures have gained attention
in computer vision tasks. Vision Transformers (ViTs) have
shown promise in capturing global contextual information,
which is beneficial for age estimation. While ViTs have
been primarily applied to adult face datasets, their
application to infant age estimation remains an emerging
area of research. [0]

The field of infant age estimation is still developing, with
challenges stemming from limited datasets and the subtlety
of facial changes in early development. While traditional

methods laid the groundwork, deep learning approaches,
particularly CNNs, have significantly advanced the field.
The introduction of specialized datasets like BabyFace and
the exploration of Transformer-based, CNN and contrastive
learning models offer promising directions for future
research.

3. Methods

We formulate the task of baby age estimation as a 3-class
classification problem, where the input is a single RGB
image of a baby’s face and the output is a discrete age class:
1 year, 2 years, or 3 years. Let the input image be denoted
by x € R322422 and the target label by y € {0,1,2},
corresponding to the three age categories. Given an image
x, our model outputs a probability distribution p = f0 (x)
€ R3 where Y,i pi =1 via a softmax layer. The predicted
age class is then given by J = arg max; pi.

We experiment with four modern deep architectures:

e VGG-16 CNN: A deep convolutional network
with 13 convolutional layers and 3 fully connected
layers. We use the ImageNet-pretrained weights
and finetune only the final classifier layer by
replacing the 1000-way output with a 3-class
output head. All convolutional layers are frozen
during training, and only the classifier is updated.

e VIiT-B/16 (Vision Transformer): A transformer-
based architecture that divides an image into
16x16 patches and processes them as a sequence
of tokens. We use the ViT _B_16 Weights
pretrained weights from PyTorch. All transformer
blocks are frozen, and we finetune only the
classification head. Both models are trained using
cross-entropy loss.

e SimCLRv2 150 Ix skl: A self-supervised
learning model designed to leverage large amounts
of unlabeled data while requiring minimal labeled
examples for fine-tuning. Built with Resnet50
with 35 million parameters and pretrained on
ImageNet.

e SimCLRv2 UTKFace: A new model trained on
contrastive learning with UTKFace dataset for 270
epochs, and a classifier added on top.

4. Dataset and Features
Our experiments are based on a combination of the

UTKFace dataset [11] and a supplementary collection
of baby images crawled from the Internet. The



UTKFace dataset is a large-scale facial dataset labeled
with age, gender, and ethnicity, from 0 - 116 years old.
Unfortunately, infant images represent only a small
fraction (8.5%) of the dataset and are highly
imbalanced across age labels. Furthermore, this dataset
also presents significant inconsistencies in images
between the three age groups: Age 1: 1282, Age 2: 531,
Age 3: 318, with Age 1 representing 60% of the data.
To mitigate this limitation, we constructed a curated
superset and later applied extensive data augmentation
to artificially expand our training set.

We selected only those images labeled with age 1, 2,
or 3, based on the filename convention in UTKFace
(e.g., 1_...jpg indicates ages between 0 - 1), and after
adding the crawled images, this resulted initially in a
dataset of: 2,235 images for age 1, 1489 for age 2, and
1,447 for age 3, for a total of 5,171 original baby face
images.
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Inspecting the dataset with t-SNE analysis we found
Age 1 (Class 0) to have the most separation from Age
3 (Class 2) and Age 2 (Class 1) to have the least
separation from the other two categories. This is not
surprising since Age 2 is in a developmental stage
between Age 1 and Age 3:
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We therefore expect our models to have special
difficulties identifying Age 2 category.

VGG-16 and ViT-B/16

For VGG and ViT models it is essential to have a large
dataset, to increase the dataset size we applied three
forms of label-preserving augmentation to every
image:

e Random Rotation (£15°) — to simulate head pose
variation

e Color Jitter (brightness, contrast) — to simulate
lighting variability

e Perspective Warp — to simulate slight viewpoint
shifts

After augmentation, we obtained an expanded dataset
of:

e 5,688 images per class

e Total: 17,064 images

Each image was resized and cropped to a resolution of
224 x 224 pixels using the MTCNN face detector [8],



with a 20% margin added to preserve surrounding
context (e.g. head and ears)

We did not extract hand-crafted features like HOG,
SIFT, or PCA-reduced embeddings. Instead, we relied
entirely on end-to-end feature learning from raw pixels
using VGG-16 and ViT. No additional engineered
features (e.g., landmarks or age-specific ratios) were
used. The effectiveness of these deep features was
validated by training only the final classification layer
on our custom dataset.

5. Baseline Experiments / Results / Discussion

In the initial experiments (baseline), we trained both
models on a smaller subset of the UTKFace dataset
(with fewer than 1300 images total). The performance
was promising but limited by data scarcity, several
images with inaccurate ages (2 and 3) and class
imbalance, with VGG-16 and Vit-B/16 resulting in
validation accuracy of 66.7% and 65.4% respectively.
Despite decent results, both models exhibited
overfitting and reduced generalization due to the
unbalanced nature of the initial data (60% Age 1), and
thus, we discarded those results.

After an exhaustive search for an adequate dataset, we
opted for augmenting to expand the dataset to 17,064
total images (5,688 per class), we retrained both
models and observed marked improvements.

Final Validation Accuracy (Based on Confusion
Matrix Evaluation):

Model Correct # Val | Final
Predictions Images | Accuracy

VGG-16 1411 2560 55.2%

ViT-B/16 | 1467 2560 57.3%

VGG-16 Confusion Matrix
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Detailed Comparison

Metric VGG-16 ViT
Total val 2560 2560
.images
Correct 1413 1467
predictions
Val accuracy 55.2% 57.3%
Age 1 accuracy | 79.2% 56.9%
Age 2 accuracy | 54.9% 58.7%
Age 3 accuracy | 31.5% 56.3%
Bias observed Overconfident | Balanced,
on Age 1 slightly Age 2
heavy
Generalization | Weaker on Age | Stronger
3 overall
Confusion High Age 3 -> | Smoother Age
Trend Age 2| 1-2-3
confusion transitions
(UTKDataset
shows this
issue too)

Qualitative Error Analysis

Both models struggle most with distinguishing
between Ages 2 and 3, confirming our prediction from
t-SNE analysis and the confusion matrix findings, and
the mislabeled data we identified with the original
UTKFace Dataset. These qualitative samples highlight
the visual ambiguity of certain faces and the



importance of fine-grained cues for infant age
estimation.

Overfitting and generalization

VGG16 showed signs of overfitting to younger age
classes, particularly Age 1, where it achieved high
accuracy but deteriorated sharply on Age 3.

ViT, while less accurate on Age 1, generalized better
across the entire age spectrum. This aligns with our
hypothesis that ViT’s attention mechanism better
captures fine-grained facial features when given
sufficient data.

Insights

VGG16 tended to rely on low-level features, leading to
underperformance on less distinctive faces of older
babies.

ViT's patch-based encoding led to smoother
predictions, but still showed mild bias toward Age 2,
potentially due to data augmentation artifacts or
inherent ambiguity in that developmental stage.

Data augmentation significantly increased both
models’ robustness.

SimCLRv2 150 1x skl

Next, we evaluated the dataset using two variations of
SimCLRv2. The first variation was provided by
google-research/simclr at github.com.

The model has been pretrained on the ImageNet
dataset, providing high-quality feature embeddings
from its backbone. Its layers are frozen, therefore fine-
tuning the backbone layers is not possible, but given
the limited size of our dataset, fine-tuning would not be
promising. However, the model’s strong performance
in Linear Evaluation (74.6%) suggests that adding a
classifier on top can effectively leverage its pretrained
features for promising results.

We tried both, expanding our dataset, and using only
the 5,171 images. We also tried extracting the face
from each image and omitting extraction from our data
pipeline. For the final classifier, we tried both a shallow
classifier and alternatively a deep layer classifier. We
also added minor image augmentation to the data
pipelines which improved the speed of each training
epoch.

The classifiers were built as follows:
Shallow Classifier:

- Images (224x224x%3) undergo random flipping,
rotation, and zoom to improve generalization.

- SimCLRv2 feature extractor model to extract the
feature embeddings (proj_head input).

- A 128-unit dense layer refines extracted features.

- Batch Normalization stabilizes training, while
Dropout (0.3) prevents overfitting.

- A Softmax classifier predicts one of three classes

Deep Classifier:

- Input images also undergo random flipping,
rotation, and zooming to improve generalization.
- SimCLRv2 feature extractor model to extract the
feature embeddings (proj_head input).
- First dense layer (512-unit, ReLU, dropout)
refines extracted features.
- Second dense layer (256-unit, BatchNorm,
dropout) introduces a skip connection:
o If feature dimensions match, they are
added.
o Otherwise, they are concatenated to
preserve feature integrity.
- Third dense layer (128-unit, BatchNorm, dropout)
refines learned representations.
- A Softmax classifier predicts one of three classes

The training was performed with 20 epochs, we
explored learning rates of 0.0005 to .0001, with a
learning rate drop of 0.75*LR validation loss callback
with patience = 3. All runs with a batch size of 64.

Table with results of our various approaches:

Classifier Face Aug / No
Crop exp Crop

Shallow 65.31 64.27 68.6

Deep 64.45 68.3 70.6

The above results of 68.6 show that despite the
simplicity of the shallow classifier it performs close to
the deep classifier, and no additional pre-processing on
the images is needed. The shallow classifier performs
better than VGG and ViT on less data.

Below are the results of the SImCLRv2 with Deep
Classifier:



Training vs Validation Accuracy
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Next, we built a SImCLRv2 model from the ground up
by doing self-supervision training with the UTKFace
dataset. The main objective was to determine if we
could surpass the results from r50 1x skl by
leveraging fine tuning. The UTKFace dataset consist
of approximately 25,000 images, with age categories
from 0 to 116, with various data sizes per category. The
Restnet50 architecture was used as the backbone with
image size set to 224x224, and normalization
transformation applied to each image based on the
calculated mean and standard deviation specific to this
dataset.

Approximately 250 epochs were completed in 12 hours
and achieved an accuracy of ~16%.
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After extracting the features and analyzing with t-SNE,
we can see that the categories from 0 — 10 (aqua blue)
are being separated from the bulk of the data. These
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After adding the Deep Classifier on top, and unfreezing
the backbone layers for fine tuning, it achieved a
validation accuracy of 63.9%. The below results are
with the original 5K dataset, without any image
preprocessing:
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We also tried the Shallow Classifier, and other schemes
to improve the validation accuracy but are here omitted
for brevity.

SimCLRv2 r50 1x skl Error Analysis

The picture below shows examples of false predictions
from the SImCLRv2 r50 1x sklmodel for babies of
Age 1 predicted falsely as Age 2 (first row), and the
True predictions (second row). When compared, the
babies who are wrongly categorized appear in general
older.
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Furthermore, the picture below shows similar
examples for false predictions for babies of Age 3
predicted as Age 2 (first row). In contrast to the
previous example, these babies appear in general
younger.
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In both cases, the model is mis-categorizing images
because it’s picking up based on the fact that in the real
world, in the span of a year, babies of Age 2 sometimes
appear similar to Age 1 and sometimes appear similar
to Age 3. If the model is recognizing facial details,
higher resolution images in the train data might provide
the granularity to train the model to recognize more
subtle details about Age 2 and categorize it
appropriately.

6. Conclusion / Future Work

Overall results:

Val acc

(%)
Model Overall Agel | Age2 | Age3
VGG-16 55.2 79.2 54.9 58.7
ViT-B/16 57.3 56.9 58.7 56.3
SimCLRv2 63.9 71 49 55
UTKFace

SimCLRv2 70.63 77 51 70
r50 1x skl

Above we can see that all models struggle to predict
the Age 2 category. It is surprising that the homebuilt
SimCLRv2 model also outperformed VGG and ViT
(63,9%). Overall r50 1x skl model is the top
performer according to validation accuracy, although
the ViT seems to generalize better and provide more
balance results.

In this project, we explored the challenge of estimating
the relative age of babies from facial photographs using
deep learning. This task is especially difficult due to
the subtle visual changes between early childhood
stages, compounded by a lack of large, annotated
datasets specific to infant faces. To overcome this, we
constructed an expanded dataset using UTKFace
combined with crawled and augmented baby images,
resulting in over 17,000 labeled samples across three
target age classes: 1, 2, and 3 years old.

We evaluated three prominent deep learning
architectures, VGG16, a convolutional neural network,
ViT-B/16, a Vision Transformer model, and
SimCLRV2, a contrastive learning self-supervision
model. Although VGG16 and ViT-B/16 shine really
well when there are large datasets available, in the real
world we hardly find those datasets waiting for us.
Unfortunately, augmenting and expanding artificially
did not bring about the best results. However,
SimCLRv2 conveyed to us its power by demonstrating
its practicality in real world scenarios when freely
abundant datasets are not available. By transferring
learning, a powerful classifier can be built with a very
small amount of data.

Significant challenges had to be overcome to bring this
paper to fruition. However, by learning the ability to
scrape images of the internet, and leverage self-
supervised models and transfer learning, the skills
acquired have opened the door to a world of unlimited
data and deep learning.

If more time and compute were available, several
promising directions could be explored:

e Fine-Grained Age Labels: Instead of discrete class
labels (1, 2, 3), train on continuous age values with
more precise annotations to improve granularity
and evaluate regression-based formulations. The
Mixup technique could be explored in this
direction.



e Facial Landmark-Aware Models: Introduce
explicit facial keypoint guidance or hybrid CNN-
graph architectures to capture spatial growth
patterns in baby faces.

e Bias and Robustness Analysis: Systematically
evaluate the models across ethnicity, gender,
lighting, and pose variations to ensure fair and
stable performance in real-world deployment.

e Additional training to SimCLR UTKFace model:
Explore tweaks to increase the effectiveness and
efficiency of feature extraction, and increase its
epochs.

Ultimately, this work represents a foundational step
toward building Al systems that understand early facial
development—a complex, underexplored domain with
significant emotional and technical relevance.
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